

Thromboelastography-Derived Coagulation Profile of the Musculoskeletal Oncology Patient

Early Findings of a 20-Patient Pilot Study

Samir Sabharwal, MD, MPH, Adam S. Levin, MD, Carol D. Morris, MD, MS

Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Background

Thromboelastography (TEG) is a point-of-care test that measures the elasticity and strength of a clot formed from a patient's blood. It provides a more comprehensive analysis of a patient's coagulation status than conventional measures of coagulation, such as the international normalized ratio (INR).

Musculoskeletal oncology patients pose a special challenge to surgeons in terms of management of coagulation. While hypercoagulability of malignancy places the cohort as a whole at increased risk of thromboembolic complications, patients undergoing large resections and reconstructive procedures are at risk for high-volume blood loss. Better identification of patients at risk for sequelae of both hyper- and hypocoagulability is of considerable value in this population.

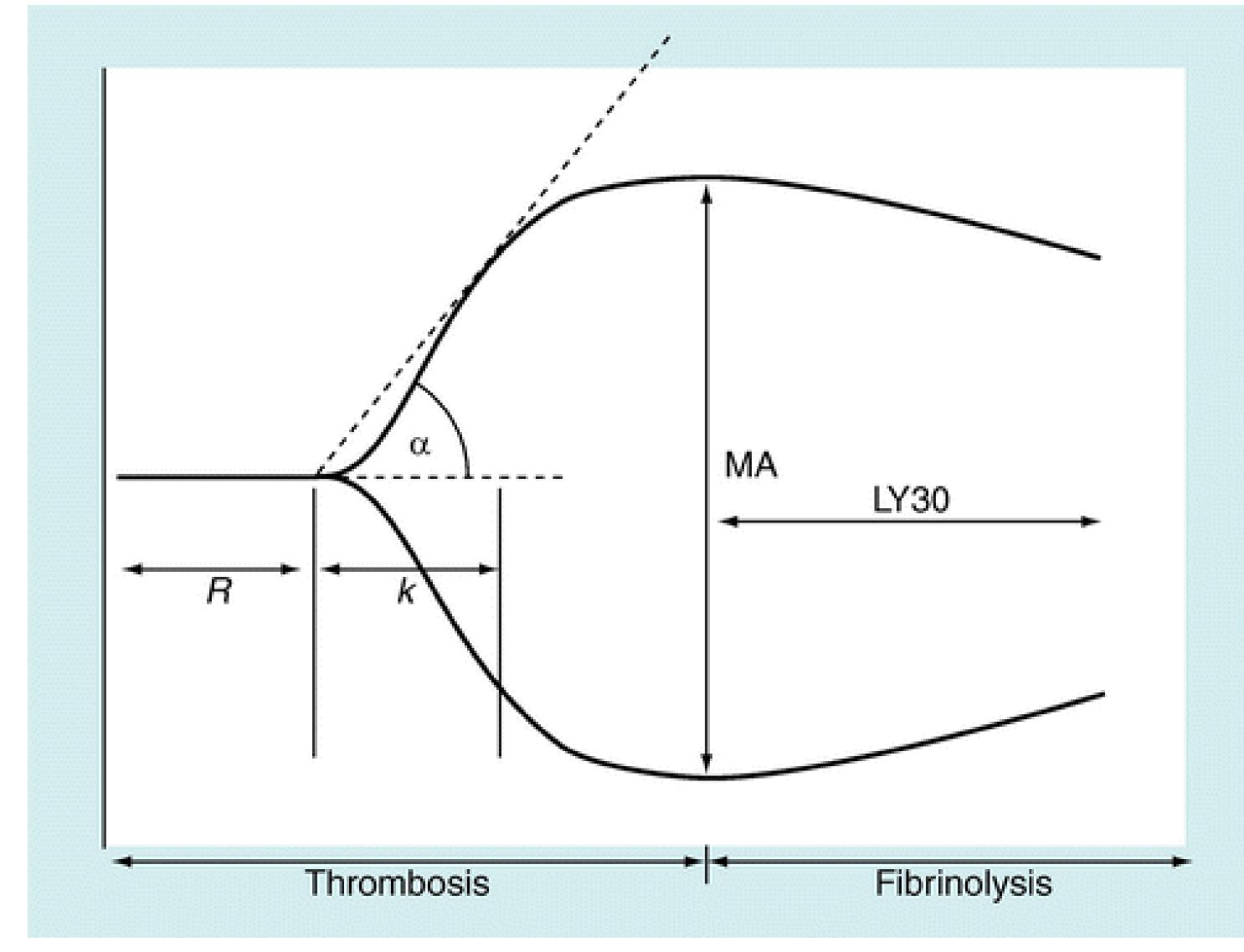
Purpose

We sought to collect and analyze preoperative TEG data in order to establish a coagulation profile of musculoskeletal oncology patients.

Patients and Methods

We prospectively collected preoperative TEG assays on 20 consecutive patients with either primary bone or soft-tissue sarcoma or metastatic disease to bone, who were scheduled to undergo either tumor resection or nail stabilization. Conventional coagulation tests were also drawn.

Results


7/20 patients (35%) were female, with a mean age of 57.8 years at the time of surgery (SD = 20.0). 8/20 (40%) patients had metastatic disease. 18/20 (90%) underwent wide or intralesional resection, and 2 underwent nail stabilization. 10/20 (50%) had pelvic disease, 4 had lower extremity disease, and 6 had chest or upper extremity disease.

13/20 (65%) patients had an abnormal preoperative TEG. All of these 13 patients demonstrated TEG markers of hypercoagulability. The most frequent aberration was a reduced K-Value (11 patients), followed by reduced R-Time (5 patients) and increased MA (4 patients). Only 5/20 (25%) of our patients had an abnormal preoperative INR.

While the mean values of R-Time, K-Value, MA, and LY30 for our study population as a whole were within their respective normal ranges (Table 1), both R-Time and K-Value were at the lower range of normal.

TEG Marker (Normal Range)		K-Value (1.0-3.0)	MA (52.0-75.0)	LY30 (0-10%)
Sample Mean (SD)	4.4 (0.8)	1.1 (0.3)	69.2 (6.9)	1.4 (1.3)

Table 1

Sample Thromboelastogram

Conclusion

Based on our early results, a majority of musculoskeletal oncology patients are hypercoagulable at baseline. TEG detected hypercoagulability at a higher rate than conventional testing.

These findings warrant further investigation, with a larger—perhaps multi-institutional—cohort, with post-operative follow-up to assess the validity of TEG with objective clinical measures, such as occurrence of DVT/VTE, intraoperative blood loss, hematoma formation, and requirement for blood product transfusion.